MATH 303 – Measures and Integration Quiz Questions

Note: Some of the questions may be in a slightly different order than they appeared when you took the quiz. This is because some portions of the quiz were set to display the questions in a random order.

1 Domains of Measures, Premeasures, and Outer Measures

Problem 1. Match the type of object with the domain on which it is defined. • Premeasure: _____ • Measure: • Outer Measure: Options: power set, algebra, σ -algebra Properties of Measures, Premeasures, and Outer Measures 2 **Problem 2.** Select all of the properties that must be satisfied by a measure. \square assigns a value of 0 to the empty set \square nonnegative \square monotone \square countably additive \square countably subadditive **Problem 3.** Select all of the properties that must be satisfied by a **premeasure**. \square assigns a value of 0 to the empty set \square nonnegative \square monotone \square countably additive \square countably subadditive **Problem 4.** Select all of the properties that must be satisfied by an **outer measure**. \square assigns a value of 0 to the empty set \square nonnegative

	onotone		
□ cc	ountably additive		
	ountably subadditive		
3 M	leasurable Func	$ ext{tions}$	
	r False : If f and g are in		paces, and let $f: X \to Y$ and $g: Y \to Z$ he composition $g \circ f$ is also a measurable
	rue		
□ Fa	alse		
□ Tı □ Fa			
4 T	. L	alla Francisco	
Proble surable \mathcal{M} is the	as a map from the mea	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as $f: $	e measurable space $(\mathbb{R}, Borel(\mathbb{R}))$, where
Proble surable \mathcal{M} is the appropriate of the properties of the problem of the	m 7. We say that a reas a map from the mean σ -algebra of Lebesguriate option at the bottom	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as $f: $	e measurable space $(\mathbb{R}, Borel(\mathbb{R}))$, where
Proble surable \mathcal{M} is the appropriate for even	m 7. We say that a reas a map from the mean σ -algebra of Lebesguriate option at the bottom	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as a surable space $(\mathbb{R}, \mathcal{M})$ to the e-measurable sets. This means om: $E = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} E_i$ set $E \subseteq \mathbb{R}$, the set	e measurable space $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}))$, where has (fill in the blanks by choosing the
Proble surable \mathcal{M} is the appropriate of the control of the con	m 7. We say that a reason as a map from the measure σ-algebra of Lebesgueriate option at the bottoms: Borel, Lebesgue-measurem 8. We say that a reable as a map from the	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as unable space $(\mathbb{R}, \mathcal{M})$ to the e-measurable sets. This means om: $\text{set } E \subseteq \mathbb{R}, \text{ the set } \square$ surable, $f(E), f^{-1}(E)$ real-valued function $f: \mathbb{R}$	e measurable space $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}))$, where has (fill in the blanks by choosing the is \mathbb{R} is Lebesgue-measurable if it is
Proble surable \mathcal{M} is the appropriate of the ap	om 7. We say that a reason as a map from the mean σ -algebra of Lebesgueriate option at the bottom σ : Borel, Lebesgue-mean σ : Borel, Lebesgue-mean σ : Borel, Lebesgue-mean σ :	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as unable space $(\mathbb{R}, \mathcal{M})$ to the e-measurable sets. This means om: $\text{set } E \subseteq \mathbb{R}, \text{ the set } $ surable, $f(E), f^{-1}(E)$ real-valued function $f: \mathbb{R}$ -e measurable space $(\mathbb{R}, \mathcal{M})$ ebesgue-measurable sets.	e measurable space $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}))$, where has (fill in the blanks by choosing the is is $\mathbb{R} \to \mathbb{R}$ is Lebesgue-measurable if it is to the measurable space $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}))$,
Proble surable \mathcal{M} is the appropriate of the ap	om 7. We say that a reason as a map from the mean σ -algebra of Lebesgueriate option at the bottom σ : Borel, Lebesgue-mean σ : Borel, Lebesgue-mean σ : Borel, Lebesgue-mean σ :	al-valued function $f: \mathbb{R} \to \mathbb{R}$ as unable space $(\mathbb{R}, \mathcal{M})$ to the e-measurable sets. This means om: set $E \subseteq \mathbb{R}$, the set surable, $f(E)$, $f^{-1}(E)$ real-valued function $f: \mathbb{R}$ - e measurable space $(\mathbb{R}, \mathcal{M})$ ebesgue-measurable sets. False: If f and g are Le	is Lebesgue-measurable if it is measurable space (\mathbb{R} , Borel(\mathbb{R})), where has (fill in the blanks by choosing the is is is Lebesgue-measurable if it is to the measurable space (\mathbb{R} , Borel(\mathbb{R})), besgue-measurable functions, then the

5 Integration

$(f_n)_{n\in\mathbb{N}}$ satisfying certain properties. Select all of the properties of $(f_n)_{n\in\mathbb{N}}$ that are part of the hypothesis of the monotone convergence theorem.
\Box f_n is continuous for each n
\Box f_n is differentiable for each n
\Box f_n is a simple function for each n
\square f_n is a measurable function for each n
\Box f_n is nonnegative for each n
\Box f_n is an increasing function for each n
\square $(f_n)_{n\in\mathbb{N}}$ is an increasing sequence of functions
\square $(f_n)_{n\in\mathbb{N}}$ is a decreasing sequence of functions
Problem 10. Let $(f_n)_{n\in\mathbb{N}}$ be an increasing sequence of extended real-valued measurable functions. True or False : The pointwise limit $f(x) = \lim_{n\to\infty} f_n(x)$ exists for every x , and f is a measurable function.
\square True
\square False
Problem 11. Fill in the blanks to complete the statement of the monotone convergence theorem.
Monotone Convergence Theorem: Let (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be a(n)
$\int_X \lim_{n \to \infty} f_n \ d\mu \ \boxed{\leq / = / \geq} \ \lim_{n \to \infty} \int_X f_n \ d\mu.$
Problem 12. Fatou's lemma is a statement about a sequence of functions $(f_n)_{n\in\mathbb{N}}$ satisfying certain properties. Select all of the properties of $(f_n)_{n\in\mathbb{N}}$ that are part of the hypothesis of Fatou's lemma.
\Box f_n is continuous for each n
\Box f_n is a simple function for each n
\Box f_n is a measurable function for each n
\Box f_n is nonnegative for each n
\square $(f_n)_{n\in\mathbb{N}}$ is an increasing sequence of functions

Problem 9. The monotone convergence theorem is a theorem about a sequence of functions

Problem 13. Fill in	the blank to complete the statement of Fatou's Lemma.
Fatou's Lemma: L measurable functions	et (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of nonne on X . Then
	$\int_{X} \liminf_{n \to \infty} f_n \ d\mu \left[\le / = / \ge \right] \liminf_{n \to \infty} \int_{X} f_n \ d\mu.$
integrable functions	(X, \mathcal{B}, μ) be a measure space, and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of complex-very X . True or False: If the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists or every $x \in X$, then f is integrable and $\int_X f \ d\mu = \lim_{n \to \infty} \int_X f_n \ d\mu$.
☐ True	
□ False Problem 15. Fill in	the blanks to complete the statement of the dominated convergence the
Problem 15. Fill in Dominated Conve quence of integrable	the blanks to complete the statement of the dominated convergence the rgence Theorem : Let (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be functions on X . Suppose that $(f_n)_{n \in \mathbb{N}}$ converges almost everywhere to a $X \to \mathbb{C}$, and there exists a nonnegative measurable/integrable/simple/box
Problem 15. Fill in Dominated Conve quence of integrable surable function $f: X$ function $g: X \to [0, 1]$	rgence Theorem : Let (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be functions on X . Suppose that $(f_n)_{n \in \mathbb{N}}$ converges almost everywhere to a
Problem 15. Fill in Dominated Convequence of integrable surable function $f: X$	rgence Theorem : Let (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be functions on X . Suppose that $(f_n)_{n \in \mathbb{N}}$ converges almost everywhere to a $X \to \mathbb{C}$, and there exists a nonnegative measurable/integrable/simple/box
Problem 15. Fill in Dominated Conve quence of integrable surable function $f: X$ function $g: X \to [0, 1]$	rgence Theorem: Let (X, \mathcal{B}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be functions on X . Suppose that $(f_n)_{n \in \mathbb{N}}$ converges almost everywhere to a $X \to \mathbb{C}$, and there exists a nonnegative measurable/integrable/simple/box such that $\left \int_X f_n \ d\mu \right \leq \int_X g \ d\mu / \int_X f_n \ d\mu \leq \int_X g \ d\mu / f_n \leq g$ and

1 0
\square contains X
\Box closed under finite intersections
\Box closed under finite unions
\Box closed under complements
\square closed under relative complements: if $E, F \in \mathcal{P}$ and $E \subseteq F$, then $F \setminus E \in \mathcal{P}$
\Box closed under countable unions
\Box closed under countable disjoint unions

\Box closed under countable increasing unions
Problem 17. Select all properties that must be satisfied by a λ -system \mathcal{L} on a set X .
\Box contains the empty set
\square contains X
\Box closed under finite intersections
\square closed under finite unions
\square closed under complements
\square closed under relative complements: if $E, F \in \mathcal{L}$ and $E \subseteq F$, then $F \setminus E \in \mathcal{L}$
\Box closed under countable unions
\Box closed under countable disjoint unions
\Box closed under countable increasing unions
Problem 18. For each example below, select the correct option that applies in general . Click and drag the correct answer from the options at the bottom to fill in each blank.
• The family of open subsets of a topological space is
• The family of open neighborhoods of a point in a topological space is
• The family of left-open, right-closed intervals is
• A σ -algebra is
• The family of sets $\{E \in \mathcal{B} : \mu(E) = \nu(E)\}$ on which two probability measures μ and ν on a measurable space (X, \mathcal{B}) agree is
• The family $\{E \in \operatorname{Borel}(\mathbb{R}) : \mu(E) = \nu(E)\}$ of Borel sets on which two Lebesgue–Stieltjes measures μ and ν agree is
• The family $\{E \in \mathcal{B} : \mu(E) = 0\}$ of null sets in a measure space (X, \mathcal{B}, μ) is
• The family $\{E \in \mathcal{B} : \mu(X \setminus E) = 0\}$ of co-null sets in a measure space (X, \mathcal{B}, μ) is
• The family $\{E \in \mathcal{B} : \mu(E) = 0 \text{ or } \mu(X \setminus E) = 0\}$ of null and co-null sets in a measure space (X, \mathcal{B}, μ) is
• The family $\{E\subseteq X: E \text{ or } X\setminus E \text{ is finite}\}$ of finite and co-finite subsets of an infinite set X is
• The family $\{E\subseteq X: E \text{ or } X\setminus E \text{ is countable}\}$ of countable and co-countable subsets of an uncountable set X is

λ -sy	ions: a π -system, a λ -system, both a π -system and a λ -system, neither a π -system nor a system
Pro	oblem 19. Complete the statement of the π - λ theorem.
π - λ	Theorem : Let X be a set, \mathcal{P} a π -system on X, and \mathcal{L} a λ -system on X. Suppose $\mathcal{P} \subseteq / = / \supseteq \mathcal{A}$
$Th\epsilon$	$\text{ in } \boxed{\mathcal{P} \text{ is a } \sigma\text{-algebra}/\mathcal{L} \text{ is a } \sigma\text{-algebra}/\sigma(\mathcal{P}) \subseteq \mathcal{L}/\sigma(\mathcal{P}) = \mathcal{L}/\sigma(\mathcal{P}) \supseteq \mathcal{L}}.$
The erti	π - λ theorem is useful for proving existence/uniqueness of measures satisfying certain propes.
7	Radon Measures
	blem 20. Out of the following list of topological spaces, select all options that are locally apact Hausdorff spaces.
	Discrete spaces
	\square The rational numbers with the subspace topology inherited from the standard topology on $\mathbb R$
	\square Euclidean space \mathbb{R}^d for $d \in \mathbb{N}$
	Compact metric spaces
	The space $C[0,1]$ of complex-valued continuous functions $f:[0,1]\to\mathbb{C}$ with the topology of uniform convergence
[0, c]	oblem 21. Let X be an LCH space. A Radon measure is a Borel measure μ : Borel (X) – ∞] satisfying 3 properties (click and drag the correct answer from the options at the bottom to n each blank):
1	. locally finite: the measure of every set is finite
2	. outer regular on \square sets: if E is $a(n)$ \square set, then
	$\mu(E) = \boxed{\qquad} \{\mu(F) : F \text{ is a(n)} \boxed{\qquad} \text{set and } E \boxed{\qquad} F\}.$
3	. inner regular on \square sets: if E is $a(n)$ \square set, then
	$\mu(E) = \{\mu(F) : F \text{ is a(n)} \text{set and } E F\}.$
Opt	ions: open, closed, compact, Borel; \subseteq , =, \supseteq ; sup, inf
Pro	oblem 22. True or False : Every locally finite Borel measure on $\mathbb R$ is a Radon measure.
	True True